Adaptive sampling for nonlinear dimensionality reduction based on manifold learning
نویسندگان
چکیده
We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space that is approximately isometric to the manifold that is assumed to be formed by the high-fidelity NavierStokes flow solutions under smooth variations of the inflow conditions. The focus of the work at hand is the adaptive construction and refinement of the Isomap emulator: We exploit the non-Euclidean Isomap metric to detect and fill up gaps in the sampling in the embedding space. The performance of the proposed manifold filling method will be illustrated by numerical experiments, where we consider nonlinear parameter-dependent steady-state Navier-Stokes flows in the transonic regime.
منابع مشابه
Adaptive Neighborhood Graph for LTSA Learning Algorithm without Free-Parameter
Local Tangent Space Alignment (LTSA) algorithm is a classic local nonlinear manifold learning algorithm based on the information about local neighborhood space, i.e., local tangent space with respect to each point in dataset, which aims at finding the low-dimension intrinsic structure lie in high dimensional data space for the purpose of dimensionality reduction. In this paper, we present a nov...
متن کاملTwo models for Bayesian supervised dimension reduction
We study and develop two Bayesian frameworks for supervised dimension reduction that apply to nonlinear manifolds: Bayesian mixtures of inverse regressions and gradient based methods. Formal probabilistic models with likelihoods and priors are given for both methods and efficient posterior estimates of the effective dimension reduction space and predictive factors can be obtained by a Gibbs sam...
متن کاملAn Adaptive Neighborhood Graph for LLE Algorithm without Free-Parameter
Locally Linear Embedding (LLE) algorithm is the first classic nonlinear manifold learning algorithm based on the local structure information about the data set, which aims at finding the low-dimension intrinsic structure lie in high dimensional data space for the purpose of dimensionality reduction. One deficiency appeared in this algorithm is that it requires users to give a free parameter k w...
متن کاملمدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره
In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...
متن کاملAn Automatic and Adaptive Multi-manifolds Learning Algorithm
Isomap is a classic and representative manifold learning algorithm for nonlinear dimensionality reduction, which aims to circumvent the problem of “the curse of dimensionality” and attempts to recover the intrinsic structure hidden in high-dimensional data based on the assumption that data lie in or near a single manifold. However, Isomap fails to work when data set consists of multi-clusters o...
متن کامل